Exercise 14

Let $\mathbf{v}_{1}=(0,3,0), \mathbf{v}_{2}=(2,2,0), \mathbf{v}_{3}=(1,1,3)$. These three vectors with their tails at the origin determine a parallelepiped P.
(a) Draw P.
(b) Determine the length of the main diagonal (from the origin to its opposite vertex).

Solution

To obtain the main diagonal vector, add all the vectors together.

$$
\begin{aligned}
\mathbf{v} & =\mathbf{v}_{1}+\mathbf{v}_{2}+\mathbf{v}_{3} \\
& =(0,3,0)+(2,2,0)+(1,1,3) \\
& =(0+2+1,3+2+1,0+0+3) \\
& =(3,6,3)
\end{aligned}
$$

Calculate the magnitude of \mathbf{v} to get its length.

$$
\begin{aligned}
\|\mathbf{v}\| & =\sqrt{3^{2}+6^{2}+3^{2}} \\
& =\sqrt{54} \\
& \approx 7.35
\end{aligned}
$$

